Abstract

Biochips are composed of arrays of micropatterns enabling the optical detection of target analytes. Inkjet printing, complementary to commercially available micro- and nanospotters, is a contactless and versatile micropatterning method. Surprisingly, the inkjet printing of molecularly imprinted polymers (MIPs), also known as biomimetic synthetic antibodies, has not been demonstrated as yet. In this work, core–shell structures are proposed through the combination of inkjet printing of the core (top-down approach) and controlled radical polymerization (CRP) to decorate the core with a thin film of MIP (bottom-up approach). The resulting biochips show quantitative, specific, and selective detection of antibiotic drug enrofloxacin by means of fluorescence analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.