Abstract

Near full genome sequencing (NFGS) of HIV-1 is required to assess the genetic composition of HIV-1 strains comprehensively. Population-wide, it enables a determination of the heterogeneity of HIV-1 and the emergence of novel/recombinant strains, while for each individual it constitutes a diagnostic instrument to assist targeted therapeutic measures against viral components. There is still a lack of robust and adaptable techniques for efficient NFGS from miscellaneous HIV-1 subtypes. Using rational primer design, a broad primer set was developed for the amplification and sequencing of diverse HIV-1 group M variants from plasma. Using pure subtypes as well as diverse, unique recombinant forms (URF), variable amplicon approaches were developed for NFGS comprising all functional genes. Twenty-three different genomes composed of subtypes A (A1), B, F (F2), G, CRF01_AE, CRF02_AG, and CRF22_01A1 were successfully determined. The NFGS approach was robust irrespective of viral loads (≥306 copies/mL) and amplification method. Third-generation sequencing (TGS), single genome amplification (SGA), cloning, and bulk sequencing yielded similar outcomes concerning subtype composition and recombinant breakpoint patterns. The introduction of a simple and versatile near full genome amplification, sequencing, and cloning method enables broad application in phylogenetic studies of diverse HIV-1 subtypes and can contribute to personalized HIV therapy and diagnosis.

Highlights

  • HIV-1 full genome sequencing is a challenging task due to the broad degree of HIV-1 genomic diversity worldwide

  • Before sample collection, informed consent was obtained from the study participants, who were all part of a cohort of HIV positive individuals; this cohort is monitored at the Medical Diagnostic Center (MDC) in Yaoundé, Cameroon in collaboration with the

  • The protocol should be suitable for several downstream methods including high-throughput sequencing (NGS or Third-generation sequencing (TGS)), single genome amplification (SGA), cloning, and bulk sequencing, and applicable to modern practice in well-equipped labs as well as to basic procedures in resource-limited countries

Read more

Summary

Introduction

HIV-1 full genome sequencing is a challenging task due to the broad degree of HIV-1 genomic diversity worldwide. HIV-1 group M has spread globally, causing more than 85% of global HIV infections and can be subdivided into nine subtypes (A–D, F–H, J, and K), at least six sub-subtypes of A and F (A1–A6, F1–F2), currently at least 98 circulating recombinant forms (CRFs) [5], and numerous unique recombinant forms (URFs) [6]. CRFs and URFs are composed of two or more (sub)-subtypes; while CRFs have been identified in at least three epidemiologically unlinked individuals, URFs are defined as recombinants without evidence of onward transmission [5]. Including sequences that remain unclassified or can be attributed to ancient strains [10] poses a significant challenge for HIV-1 molecular surveillance, diagnosis, and therapy [11,12]. Robust and versatile amplification and sequencing protocols are needed that apply to such strains over the near full genome (NFG)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call