Abstract

In atmospheric aerosol studies, it is often required to use two different impactors, namely, the normal pressure and the low-pressure impactor, to measure the mass-size distribution over a wide size range. From the perspective of rendering the system compact for such measurements, it may be more advantageous to combine the two features in a single instrument. In an effort towards exploring this option, a variable configuration cascade impactor (VCCI) comprising of 7 normal pressure and 4 low-pressure stages has been designed and developed. In configuration-1, it operates as a low-pressure impactor, with a sampling flow rate of 10 L min −1 and classifies the particles from 0.1 to 21 μm in eleven size classes. In configuration-2, it operates as a normal pressure impactor, with a sampling flow rate of 45 L min −1, and classifies the particles from 0.53 to 10 μm in seven size classes. As part of performance evaluation of the system, the deposit patterns and the integral performance have been studied. For integral performance, a comparative mass-size distribution measurement between VCCI and standard Andersen impactor was carried out. Its performance was also evaluated against the GRIMM Scanning Mobility Particle Sizer (SMPS) in the common size range of both these instruments and against GRIMM Optical Particle Counter (OPC). In addition to this, VCCI was evaluated for its performance in the PM x configuration obtained by removing a few of the impactor stages sequentially and measuring corresponding size distribution for every stage removed. Changes in the distribution parameters due to spillover of the deposits of previous stage to remaining stages were within 10%. This variation is well within the generally accepted value for all environmental measurement related applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call