Abstract
Aromatase is a CYP450 enzyme that catalyses the conversion of androgens into oestrogens, where the decrease in the production of oestrogens aided by aromatase inhibitors is considered a target in post-menopausal breast cancer therapy. TLC-bioautography is a technique employed for combining chromatographic separations on TLC plates with bioassays. This is the first report to evaluate aromatase inhibitory activity using this technique. The aim of this study is to develop and validate a new TLC-bioautographic method for determination of aromatase inhibitory activity in 14 plant extracts. Two quantitation methods, the peak area method and reciprocal iso-inhibition volume (RIV) method, were compared and investigated to attain reliable results. Factors affecting the enzymatic reaction (temperature, pH, enzyme and substrate concentrations … etc.) were also investigated to attain the optimum parameters. TLC assisted by digital image processing was implemented for quantitative estimation of the aromatase inhibition of 14 plant extracts using chrysin as positive control. The fluorometric substrate dibenzyl fluorescein (DBF) was utilised for the assay, where inhibitory compounds were visualised as dark spots against a blue fluorescent background. Two software programs, Sorbfil® videodensitometer (in the peak area method) and ImageJ® (in the RIV method), were thoroughly validated using the International Council on Harmonisation (ICH) guideline and used for quantitation. The RIV method showed superiority over the peak area method in the quantitation results of the tracks with non-homogenous background with %RSD values of 0.98 and 1.49 compared with 2.86 and 3.58, respectively. Further, the methods allow the comparison of the activity of different unknown inhibitory compounds without the need for a reference or a positive control. Using the TLC-bioautographic method by image processing combined with the RIV quantitation method, simultaneous separation and quantitation of aromatase inhibitory components could be applied to estimate the relative activity of various plant extracts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.