Abstract

Due to anthropogenic activities, potentially toxic elements cause severe soil pollution worldwide. Therefore, remediation of contaminated soils is exigent and imperative. One cost-effective and environmentally friendly remediation approach is the application of biochar, which is a solid carbonaceous material. Biochar degrades slowly in soil and can persist there for thousands of years, according to various estimations. In addition, coal obtained from crop wastes has a developed porous structure, a high specific surface area, and does not contain toxic compounds such as heavy metals and polycyclic aromatic hydrocarbons. Biochar with optimal values for specific surface area and porosity was obtained from rice husk by stepwise pyrolysis. The pyrolysis parameters such as the heating rate (11 °C∙min−1), temperature (700 °C), and holding time (45 min) were established. At the same time, the surface area of the biochar increased by almost three times with a change in the pyrolysis conditions. As a part of this research, the efficacy of adsorption of Cu(II) from Haplic Chernozem using biochar made from rice husk was examined. The Langmuir and Freundlich models were employed to describe the adsorption data. The isotherm data of heavy metals was better fitted to the Langmuir adsorption model. The addition of rice husk biochar to the soil presented greater removal efficiencies of Cu(II) than soil in pure form. The analysis of the structural characteristics of the sorbent suggest that this material may work efficiently for the restoration of contaminated soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.