Abstract

A two-step SYBR Green I based real time RT-PCR targeting the matrix (M) gene of Peste des petits ruminants virus (PPRV) was developed. The specificity of the assay was assessed against viral nucleic acid extracted from a range of animal viruses of clinical and structural similarities to PPRV including canine distemper virus, measles virus, bluetongue virus and Newcastle disease virus. But none of the viruses and no template control showed an amplification signal. Sensitivity of the same assay was assessed based on plasmid DNA copy number and with respect to infectivity titre. The lower detection limit achieved was 2.88 plasmid DNA copies/μl with corresponding Ct value of 35.93. Based on tissue culture infectivity titre the lower detection limits were 0.0001TCID50/ml and 1TCID50/ml for the SYBR green I based real time RT-PCR and conventional RT-PCR, respectively. The calculated coefficient of variations values for intra- and inter-assay variability were low, ranging from 0.21% to 1.83% and 0.44% to 1.97%, respectively. The performance of newly developed assay was evaluated on a total of 36 clinical samples suspected of PPR and compared with conventional RT-PCR. The SYBR Green I based real time RT-PCR assay detected PPRV in 32 (88.8%) of clinical samples compared to 19 (52.7%) by conventional RT-PCR. Thus, the two-step SYBR Green I based real time RT-PCR assay targeting the M gene of PPRV reported in this study was highly sensitive, specific and reproducible for detection and quantitation of PPRV nucleic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.