Abstract

This paper presents the development of a two-dimensional hydrodynamic sediment transport model using the finite volume method based on a collocated unstructured hybrid-mesh system consisting of triangular and quadrilateral cells. The model is a single-phase nonequilibrium sediment-transport model for nonuniform and noncohesive sediments in unsteady turbulent flows that considers multiple sediment-transport processes such as deposition, erosion, transport, and bed sorting. This model features a hybrid unstructured mesh system for easy mesh generation in complex domains. To avoid interpolation from vertices in conventional unstructured models, this model adopted a second-order accurate edge-gradient evaluation method to consider the mesh irregularities based on Taylor’s series expansion. In addition, the multipoint momentum interpolation corrections were integrated to avoid possible nonphysical oscillations during the wetting-and-drying process, common in unsteady sediment transport problems, to ensure both numerical stability and numerical accuracy. The developed sediment transport model was validated by a benchmark degradation case for the erosion process with armoring effects, a benchmark aggradation case for the deposition process, and a naturally meandering river for long-term unsteady sediment-transport processes. Finally, the model was successfully applied to simulate sediment transport in a reservoir that was significantly affected by typhoon events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.