Abstract
This study aims at optimizing two-line OH thermometry strategies for in-cylinder measurement in internal combustion engines. Various aspects are investigated experimentally, such as the selection of suitable OH lines and the possibility of using a single calibration coefficient for variable mixture composition, temperature, and pressure conditions. Two kinds of experimental systems have been investigated. First, a laminar methane-air burner flame at atmospheric pressure, whose stability allowed the determination of OH-laser-induced fluorescence (LIF) intensity ratios from nonsimultaneous imaging. The temperature distribution in the flame is presented for OH-transition pairs with various temperature sensitivities. The burner flame was studied for equivalence ratios from phi=0.93 to 1.30 in order to check for the stability of calibration over various flame conditions. Additionally, OH LIF images were acquired in an optical engine for the chosen OH transitions yielding data about the effect of pressure on OH LIF signals under realistic experimental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.