Abstract

The aim of this study is to investigate the performance of “thermal vapor compressors (TVCs)” as one of the main components of “multi-effect distillation (MED)” systems. A single-phase vapor flow is normally required for continuous operating of a TVC, though a mixed liquid-vapor steam flow is often formed in TVCs due to a steam condensation in the supersonic flow through nozzles. A two-phase flow in a TVC undesirably reduces its performance, and lowers fresh water production rates of a desalination system. More accurate prediction of the “entrainment ratio” as a main performance parameter of a TVC completely influences on the gain output ratio (GOR) of a desalination system. For this purpose, a mathematical model was developed with respect to the phase-changing flow, and the model was later validated with experimental data. An iterative multiphase flow methodology based on a non-equilibrium condensation theory was developed to explore the difference between “single-fluid” and “two-fluid” models. Interactions between the liquid and the vapor phases were thoroughly evaluated through comparing variations in nucleation rates, droplets radii, number of droplets, and so on. The advantage of this method over other numerical methods is that this method is capable of considering different velocities for the liquid and the vapor streams based on the Eulerian-Eulerian approach, where formation and collapse of droplets can be precisely predicted. Results revealed that the performance of a TVC can better be predicted in a two-fluid model when compared with a single-fluid model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.