Abstract

The role of eddy momentum fluxes in the general circulation was investigated using a two-dimensional zonally averaged statistical-dynamical model described by Yao and Stone (1987), which is almost two orders of magnitude faster than the three-dimensional climate model of Hansen et al. (1983). Results show that the vertical structure of the meridional eddy flux has relatively little impact on the general circulation, presumably because the vertical structure is strongly constrained by the thermal wind relation and surface friction. On the other hand, it was found that, in order to simulate accurately the general circulation and its response to climate changes, parameterization of the vertically integrated meridional eddy flux of angular momentum is necessary. A new parameterization of this eddy momentum transport was carried out, which is intended to represent the transport due to large-scale transient eddies arising from baroclinic instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.