Abstract

The direct carbon solid oxide fuel cell (DC-SOFC) is a new-type energy conversion device that converts chemical energy stored in solid carbon into electricity efficiently with environmental benignity and low cost for abundant carbon resources, which reveals upward impetus recently. To accelerate the practical application of DC-SOFC, here, we report a high-performance La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolyte-supported tubular DC-SOFC stack for portable applications, in which Ag– Ce0.8Gd0.2O1.9 (Ag-GDC) is used as symmetrical electrodes and camellia oleifera shell char as fuel. The performance of the 3-cell-stack stands out, with an open circuit voltage (OCV) of 3.18 V, an output power of 2.65 W, and a maximum volumetric power density of 605 mW cm−3 at 800 °C. In addition, the stack can survive for 5.82 and 1.12 h under the constant discharging currents of 200 and 800 mA, respectively, exhibiting discharge capacities of 3492 and 2688 mA h. Furthermore, adopting the external anode design can sextuple the fuel load and lead to remarkably improved output performance, discharge time, and discharge capacity of the stack (3.71 W, 9.2 h, 22080 mA h). The above results indicate that LSGM electrolyte-supported tubular DC-SOFC stacks show great potential for developing into high-performing, efficient, and environmentally friendly portable power sources for distributed applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.