Abstract

BackgroundChagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2.Methods/Principal findingsThe Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms.Conclusions and significanceThis is the first study that develops a MS-based platform for T. cruzi strain typing. Indeed, the Tc-STAMS2 method allows T. cruzi strain typing using MS/MS spectra as discriminatory features and allows the differentiation of TcI-TcVI DTUs. Similar to genomic-based strategies, the Tc-STAMS2 method allows identification of strains within DTUs. Its robustness towards different experimental and biological variables makes it a valuable complementary strategy to the current T. cruzi genotyping assays. Moreover, this method can be used to identify DTU-specific features correlated with the strain phenotype.

Highlights

  • Chagas disease known as American trypanosomiasis affects around 6–7 million people especially in Latin America [1]

  • This is the first study that develops a MS-based platform for T. cruzi strain typing

  • The combination of mass spectrometry and computational approaches was used to develop a method for T. cruzi discrete typing units (DTUs) discrimination, named Tc-STAMS2

Read more

Summary

Introduction

Chagas disease known as American trypanosomiasis affects around 6–7 million people especially in Latin America [1]. The etiologic agent of Chagas diseases is the protozoan Trypanosoma cruzi [2] that infects several mammalian hosts and is primarily transmitted through the contamination with feces of triatomine bugs. Congenital, blood transfusions, transplants and ingestion of contaminated foods represent other ways of infection [3]. Chagas disease is characterized by an acute and chronic phase. The acute phase lasts a few weeks and may present mild symptoms such as fever and swelling around the site of infection[4]. The chronic phase is in general lifelong and asymptomatic. 20–30% of patients develop cardiac or gastrointestinal complications[3]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.