Abstract
This study focuses on the development of a treatment train for a leachate from a hazardous industrial waste landfill (HIWL) previously treated by: (i) catalytic oxidation with hydrogen peroxide (H2O2) for sulphide and sulphite conversion into oxidized sulphur species, including sulphate, and (ii) chemical precipitation of sulphate as barite. The complete treatment line counted on four more stages: (iii) 1st biological oxidation for removal of biodegradable organic compounds and nitrogen species, (iv) coagulation with ferric chloride (coagulant dose of 100 mg Fe L−1, pH 2.8) for removal of a fraction of recalcitrant organics and suspended solids, (v) photo-Fenton oxidation using ultraviolet A (UVA) radiation (PF-UVA) (pH 2.8, initial total dissolved iron content of 140 mg L−1, treatment time of ~4 h) for recalcitrant organics degradation and biodegradability improvement, and (vi) 2nd biological oxidation for removal of the biodegradable organic matter resulting from the PF-UVA process. The use of anodic oxidation or photoelectro-Fenton processes in stage (v) demonstrated to be unfeasible. A chemical oxygen demand (COD) below 1000 mg O2 L−1, a common limit imposed by municipal wastewater treatment plants (MWWTPs) to effluents discharged into the municipal sewer, was achieved after a feasible treatment time (~4 h) using the multistep approach. The remediation of the HIWL leachate proved to be a big challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.