Abstract
In this paper we discuss the development of an indirect time-of-flight (ToF) pixel in the 0.11- $\mu \text{m}$ CMOS image sensor technology. The pixel design is based on a pinned-photodiode structure with a novel vertical overflow drain (VOD) shutter mechanism used for fast modulation. We present the second generation of the pixel, with a greatly improved VOD structure that enables a fast shutter efficiency better than 1:100 and a deeper photodiode collection depth for better quantum efficiency in the near-infrared wavelengths. We present a new 6.7- $\mu \text{m}$ pixel design with four pinned storage diodes (SDs) that feature in-pixel complete charge transfer and enable correlated-double-sampling readout as well as an almost simultaneous global shutter exposure of up to four interleaved frames to be used for the scene depth computation. The novel design features a low readout noise of 7.5e- and a full-well-capacity of 9500e- per SD (a total of 38 000e- per pixel).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.