Abstract

The Russell surface-wave magnitude formula, developed in Part I of this two-part article, and the M_s(VMAX) measurement technique, discussed in this article, provide a new method for estimating variable-period surface-wave magnitudes at regional and teleseismic distances. The M_s(VMAX) measurement method consists of applying Butterworth bandpass filters to data at center periods between 8 and 25 sec. The filters are designed to help remove the effects of nondispersed Airy phases at regional and teleseismic distances. We search for the maximum amplitude in all of the variable-period bands and then use the Russell formula to calculate a surface-wave magnitude. In this companion article, we demonstrate the capabilities of the method by using applications to three different datasets. The first application utilizes a dataset that consists of large earthquakes in the Mediterranean region. The results indicate that the M_s(VMAX) technique provides regional and teleseismic surface-wave magnitude estimates that are in general agreement except for a small distance dependence of −0.002 magnitude units per degree. We also find that the M_s(VMAX) estimates are less than 0.1 magnitude unit different than those from other formulas applied at teleseismic distances such as Rezapour and Pearce (1998) and Vanĕk et al. (1962). In the second and third applications of the method, we demonstrate that measurements of M_s(VMAX) versus m_b provide adequate separation of the explosion and earthquake populations at the Nevada and Lop Nor Test Sites. At the Nevada Test Site, our technique resulted in the misclassification of two earthquakes in the explosion population. We also determined that the new technique reduces the scatter in the magnitude estimates by 25% when compared with our previous studies using a calibrated regional magnitude formula. For the Lop Nor Test Site, we had no misclassified explosions or earthquakes; however, the data were less comprehensive. A preliminary analysis of Eurasian earthquake and explosion data suggest that similar slopes are obtained for observed M_s(VMAX) versus m_b data with m_b <5. Thus the data are not converging at lower magnitudes. These results suggest that the discrimination of explosions from earthquakes can be achieved at lower magnitudes using the Russell (2006) formula and the M_s(VMAX) measurement technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.