Abstract

Analysis of the musculoskeletal movements (gait analysis) is needed in many scenarios. The in vivo method has some difficulties. For example, recruiting human subjects for the gait analysis is challenging due to many issues. In addition, when plenty of subjects are required, the follow-up experiments take a long period and the dropout of subjects always occurs. An efficient and reliable in silico simulation platform for gait analysis has been desired for a long time. Therefore, a technique using three-dimensional (3D) muscle modeling to drive the 3D musculoskeletal model was developed and the application of the technique in the simulation of lower limb movements was demonstrated. A finite element model of the lower limb with anatomically high fidelity was developed from the MRI data, where the main muscles, the bones, the subcutaneous tissues, and the skin were reconstructed. To simulate the active behavior of 3D muscles, an active, fiber-reinforced hyperelastic muscle model was developed using the user-defined material (VUMAT) model. Two typical movements, that is, hip abduction and knee lifting, were simulated by activating the responsible muscles. The results show that it is reasonable to use the improved CFD-FE method proposed in the present study to simulate the active contraction of the muscle, and it is feasible to simulate the movements by activating the relevant muscles. The results from the present technique closely match the physiological scenario and thus the technique developed has a great potential to be used in the in silico human simulation platform for many purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.