Abstract

In this study, we develop a new Li-metal battery design merging with IoT requirements, mainly the low thickness, the thermal stability and the flexibility. To reach these specifications, we firstly prepared an efficient gel polymer electrolyte (GPE) composed of a PVDF-HFP polymer network, a LiFSI: Pyr13FSI liquid binary solution and a lithium montmorillonite Li-MMT clay. The as-synthesized material exhibits a high ionic conductivity (0.48 mS cm−1 at 25 °C) and a good thermal stability, up to 140 °C. In parallel, a new battery design with an optimized ratio of packaging to active material thickness is developed. In this design, copper foils act both as current collector and as battery casing, decreasing the overall cell thickness. Li metal batteries are realized using the developed GPE material and this new battery design. The cell thickness is 360 and 760 μm for single side and double-sided architectures respectively. These batteries show well functioning under high bending and exhibit a good cycling ability with a remaining capacity higher than 85% after more than 200 cycles at 25 °C. Thanks to the combination of the original Cu packaging and the flexible GPE membrane, developed Li-metal batteries exhibit promising properties to merge with the new IoT requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.