Abstract
BackgroundHeart failure (HF) is a major cause of death worldwide. The most effective treatment for HF is heart transplantation, but its use is limited by the scarcity of donor hearts. Recently, stem cell-based therapy has emerged as a promising approach for treating myocardial infarction. Our research group has been investigating the use of human induced pluripotent stem cell-derived cardiomyocyte patches as a potential therapeutic candidate. We have successfully conducted eight cases of clinical trials and demonstrated the safety and effectiveness of this approach. However, further advancements are necessary to overcome immune rejection and enhance therapeutic efficacy. In this study, we propose a novel and efficient technique for constructing mesenchymal stem cell (MSC) tissue sheets, which can be transplanted effectively for treating myocardial infarction repair.MethodsWe applied a one-step method to construct the human adipose-derived mesenchymal stem cell (hADSC) tissue sheet on a poly(lactic-co-glycolic acid) fiber scaffold. Histology, immunofluorescence, and paracrine profile assessment were used to determine the organization and function of the hADSC tissue sheet. Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function, fibrosis area, angiogenesis, and left ventricular remodeling.ResultsIn vitro, the hADSC tissue sheet showed great organization, abundant ECM expression, and increased paracrine secretion than single cells. In vivo, the hADSC tissue sheet group demonstrated improved cardiac functional recovery, less ventricular remodeling, decreased fibrosis, and enhanced angiogenesis than the MI group.ConclusionsWe developed thick and functional hADSC tissue sheets via the one-step strategy. The hADSC tissue sheet showed excellent performance in treating myocardial infarction in the rat model.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.