Abstract
Gold nanoparticles (AuNPs) can be found in different shapes and sizes, which determine their chemical and physical characteristics. Physical and chemical properties of metallic NPs can be tuned by changing their shape, size, and surface chemistry; therefore, this has led to their use in a wide variety of applications in many industrial and academic sectors. One of the features of metallic NPs is their ability to act as optothermal energy converters, where they absorb light at a specific wavelength and heat up their local nanosurfaces. This feature has been used in many applications where metallic NPs get coupled with thermally responsive systems to trigger an optical response. In this study, we synthesized AuNPs that are spherical in shape with an average diameter of 20.07 nm. This work assessed simultaneously theoretical and experimental techniques to evaluate the different factors that affect heat generation at the surface of AuNPs when exposed to a specific light wavelength. The results indicated that laser power, concentration of AuNPs, time × laser power interaction, and time illumination, were the most important factors that contributed to the temperature change exhibited in the AuNPs solution. We report a regression model that allows predicting heat generation and temperature changes with residual standard errors of less than 4%. These results are highly relevant in the future design and development of applications where metallic NPs are incorporated into systems to induce a temperature change triggered by light exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.