Abstract

Based on aging Japanese society, there has been a strong desire for development of rehabilitation devices that patients can use at home. The purpose of this study is to develop a home-based compact, lightweight, flexible, and safe rehabilitation device. In this study, a flexible robot arm for wrist rehabilitation that can be used, while patients hold the top of the robot arm, is proposed and tested. The proposed robot arm consists of three extension type flexible pneumatic actuators (EFPAs) restrained by 22 PET sheets. To achieve suitable bending stiffness of the robot arm, three EFPAs are restrained so as to form a tetrahedral shape. The robot arm can bend toward each radial direction. In this paper, the construction and operational principles of the tested robot arm are described. Additionally, the analytical model of the robot arm for attitude control is also described. In addition, the tracking control using the robot arm for the desired orbit is performed. As a result, the tested robot arm can trace the desired orbit based on the model. It is confirmed that the robot arm has the possibility for application as a wrist rehabilitation device for patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call