Abstract

A chamber to apply aerosolized virus-containing particles to air-permeable substrates (coupons) was constructed and validated as part of a method to assess the virucidal efficacy of decontamination procedures for filtering facepiece respirators. Coliphage MS2 was used as a surrogate for pathogenic viruses for confirmation of the efficacy of the bioaerosol respirator test system. The distribution of virus applied onto and within the coupons was characterized, and the repeatability of applying a targeted virus load was examined. The average viable virus loaded onto 90 coupons over the course of 5 days was found to be 5.09 +/- 0.19 log(10) PFU/coupon (relative standard deviation, 4%). To determine the ability to differentiate the effectiveness of disinfecting procedures with different levels of performance, sodium hypochlorite and steam treatments were tested in experiments by varying the dose and time, respectively. The role of protective factors was assessed by aerosolizing the virus with various concentrations of the aerosol-generating medium. A sodium hypochlorite (bleach) concentration of 0.6% and steam treatments of 45 s and longer resulted in log reductions (>4 logs) which reached the detection limits for both levels of protective factors. Organic matter (ATCC medium 271) as a protective factor afforded some protection to the virus in the sodium hypochlorite experiments but was not a factor in the steam experiments. The evaluation of the bioaerosol respirator test system demonstrated a repeatable method for applying a targeted viral load onto respirator coupons and provided insight into the properties of aerosols that are of importance to the development of disinfection assays for air-permeable materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.