Abstract

Aldosterone synthase (CYP11B2) is a mitochondrial cytochrome P450 enzyme catalyzing the last steps of aldosterone production in the adrenal cortex. A new pharmacological approach for the treatment of the aldosterone induced effects in congestive heart failure and all forms of hyperaldosteronism could be the use of CYP11B2 inhibitors. In search for such compounds, it was our goal to develop a cellular enzyme assay suitable for screening high numbers of compounds. An assay procedure for the evaluation of inhibitors using the human CYP11B2 expressed in fission yeast Schizosaccharomyces pombe was established and a series of 10 compounds was tested in this whole cellular system. Human 11β-hydroxylase (CYP11B1), which catalyzes the production of glucocorticoids, shows more than 90% homology compared to human CYP11B2. As this enzyme should not be affected, strong inhibitors of CYP11B2 have to be tested for selectivity. For that purpose, an assay procedure with V79MZ cells that express human CYP11B1 and CYP11B2, respectively, was integrated into the evaluation process. Using these screening procedures a potent and rather selective non-steroidal inhibitor of human CYP11B2 was detected with an IC 50 value of 59 nM. We also identified a very potent inhibitor of both enzymes showing a stronger inhibitory activity against the cortisol producing CYP11B1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call