Abstract

The vortices inside mixing layers impose remarkable aero-optical distortions on a beam even at moderate subsonic speeds. Knowledge about aero-optical effects caused by vortices in the flow field, especially their spatial and temporal evolution, is limited for supersonic mixing layers because the flows have very high speeds. In this paper, the temporal evolution of aero-optical effects caused by vortices in the supersonic mixing layer was investigated. A large eddy simulation was used to simulate the supersonic flow. A novel approach, coordinate extraction of vortex core, which is based on the relationship between vortices and the profile of the optical path length over the flow field, was proposed to quantitatively calculate the radii and convective speeds of vortices. A model used to quantitatively describe the temporal evolution of aero-optical effects caused by vortices in the supersonic mixing layer was developed and validated with data of numerical calculation. The results indicated that the model is available. Finally, several conclusions drawn from this work were presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.