Abstract

In the last decade and a half, emerging vector-borne diseases have become a substantial threat to cattle across Europe. To mitigate the impact of the emergence of new diseases, outbreaks must be detected early. However, the clinical signs associated with many diseases may be nonspecific. Furthermore, there is often a delay in the development of new diagnostic tests for novel pathogens which limits the ability to detect emerging disease in the initial stages. Syndromic Surveillance has been proposed as an additional surveillance method that could augment traditional methods by detecting aberrations in non-specific disease indicators. The aim of this study was to develop a syndromic surveillance system for Irish dairy herds based on routinely collected milk recording and meteorological data. We sought to determine whether the system would have detected the 2012 Schmallenberg virus (SBV) incursion into Ireland earlier than conventional surveillance methods. Using 7,743,138 milk recordings from 730,724 cows in 7037 herds between 2007 and 2012, linear mixed-effects models were developed to predict milk yield and alarms generated with temporally clustered deviations from predicted values. Additionally, hotspot spatial analyses were conducted at corresponding time points. Using a range of thresholds, our model generated alarms throughout September 2012, between 4 and 6 weeks prior to the first laboratory confirmation of SBV in Ireland. This system for monitoring milk yield represents both a potentially useful tool for early detection of disease, and a valuable foundation for developing similar tools using other metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.