Abstract

Current research aims to develop, design, and analyze a novel solar-assisted multi-purpose energy generation system for hydrogen production, electricity generation, refrigeration, and hot water preparation. The suggested system comprises a solar dish for supplying the necessary heat demand, a re-compression carbon dioxide-based Brayton cycle, a PEM electrolyzer for hydrogen generation, an ejector refrigeration system working with ammonia, and a hot water preparation system. The first law and exergy analyses are implemented to determine the performance of the multi-generation plant with various outputs. Besides, the exergo-environmental evaluation of the plant is conducted for the environmental impacts of the plant. Furthermore, parametric analyses are executed for investigating the system outputs, exergy destruction rate, and system efficiencies. According to the results, the rate of hydrogen generated by means of the multi-generation power plant is determined to be 0.062 g/s which corresponds to an hourly production of 0.223 kg. Besides, with the utilization of the supercritical closed Brayton cycle, a power generation rate of 74.86 kW is achieved. Furthermore, the irreversibility of the overall plant is estimated as 535.7 kW in which the primary contributor of this amount is the solar system with a destruction rate of 365.5 kW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.