Abstract

A Surface Plasmon Resonance (SPR) biosensor based on an inhibition immunoassay was developed for the detection of diclofenac (DCF) in aqueous solution. Due to the small size of DCF, an hapten-protein conjugate was produced by coupling DCF to bovine serum albumin (BSA). DCF-BSA conjugate formation was confirmed via MALDI-TOF mass spectrometry. The resulting conjugate was immobilized onto the surface of a sensor fabricated via e-beam deposition of a 2 nm chromium adhesion layer followed by a 50 nm gold layer onto precleaned BK7 glass slides. Immobilization onto the nano thin gold surface was accomplished by covalent amide linkage through a self-assembled monolayer. Samples were composed of a mixture of antibody at a fixed concentration and DCF at different known concentrations in deionized water, causing the inhibition of anti-DCF on the sensor. The DCF-BSA was obtained with a ratio of 3 DCF molecules per BSA. A calibration curve was performed using concentrations between 2 and 32 μg L−1. The curve was fitted using the Boltzmann equation, reaching a limit of detection (LOD) of 3.15 μg L−1 and limit of quantification (LOQ) of 10.52 μg L−1, the inter-day precision was calculated and an RSD value of 1.96% was obtained; and analysis time of 10 min. The developed biosensor is a preliminary approach to the detection of DCF in environmental water samples, and the first SPR biosensor developed for DCF detection using a hapten-protein conjugate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call