Abstract

Thermus thermophilus (T. thermophilus) HB27 is an extreme thermophile that grows optimally at 65-72°C. Heat-induced DNA lesions are expected to occur at a higher frequency in the genome of T. thermophilus than in those of mesophiles; however, the mechanisms underlying the maintenance of genome integrity at high temperatures remain poorly understood. The study of mutation spectra has become a powerful approach to understanding the molecular mechanisms responsible for DNA repair and mutagenesis in mesophilic species. Therefore, we developed a supF-based system to detect a broad spectrum of mutations in T. thermophilus. This system was validated by measuring spontaneous mutations in the wild type and a udgA, B double mutant deficient in uracil-DNA glycosylase (UDG) activity. We found that the mutation frequency of the udgA, B strain was 4.7-fold higher than that of the wild type and G:C→A:T transitions dominated, which was the most reasonable for the mutator phenotype associated with the loss of UDG function in T. thermophilus. These results show that this system allowed for the rapid analysis of mutations in T. thermophilus, and may be useful for studying the molecular mechanisms responsible for DNA repair and mutagenesis in this extreme thermophile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call