Abstract

The production of hydrogen using membrane-based electrolyzersposes significant advantages and benefits compared to traditionalelectrolysis methods. Among the electrolyzers, anion exchangemembrane water electrolysis (AEMWE) has emerged as one of thepromising technologies owing to its unique advantages. However,the development of efficient AEMs for water electrolysis presentssignificant challenges, particularly in achieving enhanceddimensional stability and conductivity. In this study, ahyperbranched polyesteramide (HPEA) was synthesized andblended with poly(ether sulfone) (PES) to address the challenges.The resulting QPES-HPEA blend membrane exhibited a lowswelling ratio and high water uptake, which are critical formaintaining dimensional stability and enhancing the hydroxide iontransport efficiency of AEM. The enhanced physical properties andoptimized structure of the membrane make it a promising candidatefor next-generation AEMs in water electrolysis systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.