Abstract

The present study showed for the first time that selenium, iron, and nitrate could be simultaneously removed in a sulfidogenic bioreactor to meet drinking water standards. A bioreactor inoculated with mixed bacterial consortium was operated for around 330 days in anoxic environment at 30 °C under varying combination of influent selenate (200–1000 μg/L as selenium), and iron (3–10 mg/L) in presence of 50 mg/L of nitrate. Required amount of acetic acid (as carbon source) and sulfate were supplied and the reactor was operated at different empty bed contact time (EBCT) of 45–120 min. Along with complete removal of nitrate, the reactor removed both selenium and iron to meet the drinking water standards. Field emission transmission electron microscopy (FETEM) and X-ray diffraction (XRD) analyses confirmed the formation of selenium sulfide (SeS), achavalite (FeSe) and pyrite (FeS2), which were the possible removal mechanisms of selenium and iron. Thus, this study exhibited that selenium, iron, and nitrate can be simultaneously removed to meet the drinking water standards in a sulfidogenic bioreactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.