Abstract

A submerged microfiltration membrane bioreactor implementing the white-rot fungus Coriolus versicolor was developed for the treatment of textile dye wastewater following explorations with different fouling-prevention techniques. The optimum combination ensuring permeate quality and precluding membrane fouling comprises of placing a bundle of hollow fibers within a non-woven coarse-pore (50–200 μm) mesh cage, so as to avoid direct deposition of sludge onto it, together with arrangements for its periodic high-pressure back-washing (3 s/10 min) and chemical back-flushing (100 ml/m 2, every third day). Under controlled temperature (29±1°C) and pH (4.5±0.2), and applied HRT and an average flux of 15 h and 0.021 m/d, respectively, the reactor accomplished around 97% TOC and 99% color removal from the synthetic wastewater (TOC = 2 g/L; dye = 100 mg/L) for a prolonged period of observation. Realization of excellent stable pollutant removal along with alleviation of the membrane-fouling problem by employing reasonable chemical-cleaning dose presents the proposed novel system as an attractive one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.