Abstract

This paper presents a prototype Stereolithography (STL) file format slicing and tool-path generation algorithm, which serves as a data front-end for a Rapid Prototyping (RP) entry- level three-dimensional (3-D) printer. Used mainly in Additive Manufacturing (AM), 3-D printers are devices that apply plastic, ceramic, and metal, layer by layer, in all three dimensions on a flat surface (X, Y, and Z axis). 3-D printers, unfortunately, cannot print an object without a special algorithm that is required to create the Computer Numerical Control (CNC) instructions for printing. An STL algorithm therefore forms a critical component for Layered Manufacturing (LM), also referred to as RP. The purpose of this study was to develop an algorithm that is capable of processing and slicing an STL file or multiple files, resulting in a tool-path, and finally compiling a CNC file for an entry-level 3- D printer. The prototype algorithm was implemented for an entry-level 3-D printer that utilises the Fused Deposition Modelling (FDM) process or Solid Freeform Fabrication (SFF) process; an AM technology. Following an experimental method, the full data flow path for the prototype algorithm was developed, starting with STL data files, and then processing the STL data file into a G-code file format by slicing the model and creating a tool-path. This layering method is used by most 3-D printers to turn a 2-D object into a 3-D object. The STL algorithm developed in this study presents innovative opportunities for LM, since it allows engineers and architects to transform their ideas easily into a solid model in a fast, simple, and cheap way. This is accomplished by allowing STL models to be sliced rapidly, effectively, and without error, and finally to be processed and prepared into a G-code print file.

Highlights

  • In recent years, three-dimensional (3-D) printing, known as Additive Manufacturing (AM), Solid Freeform Fabrication (SFF), Layered Manufacturing (LM), or Rapid Prototyping (RP), has been identified as an innovative manufacturing technology of functional parts that involves slicing a 3-D model into two-dimensional (2-D) layers, which are reproduced physically, layer-by-layer, to create the prototype

  • Even though many other formats have been created for RP, none has been universally adopted in the same way as STL by the various makers of CAD packages [1]

  • The information produced by the slicing process is saved as Computer Numerical Control (CNC) instructions that are used by a 3-D printer to produce the prototype

Read more

Summary

Introduction

Three-dimensional (3-D) printing, known as Additive Manufacturing (AM), Solid Freeform Fabrication (SFF), Layered Manufacturing (LM), or Rapid Prototyping (RP), has been identified as an innovative manufacturing technology of functional parts that involves slicing a 3-D model into two-dimensional (2-D) layers, which are reproduced physically, layer-by-layer, to create the prototype. The 3-D model is first modelled in a Computer-Aided-Design (CAD) system, producing a Stereolithography (STL) file – a tessellated (triangulated) surface model. STL is synonymous to the tessellated standard triangular language model. Even though many other formats have been created for RP, none has been universally adopted in the same way as STL by the various makers of CAD packages [1]. The STL file is processed by a slicing procedure that results in the creation of a tool-path from the slice’s information. The information produced by the slicing process is saved as Computer Numerical Control (CNC) instructions that are used by a 3-D printer to produce the prototype. G-code is the term used to describe a text file that contains commands to run a CNC machine

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call