Abstract

The vibrations of a vessel strongly influence the behavior of the interface of the fluids in it. Thus, vertical vibrations can lead both to the parametric excitation of waves (Faraday ripples) and to the suppression of the Rayleigh-Taylor instability [1–2]. At the present time, the influence of vertical vibrations on the behavior of a fluid surface have been studied in sufficient detail (see, for example, review [3]). The behavior of an interface of fluids in the case of horizontal vibrations has been studied less. An interesting phenomenon has been revealed in the experimental papers [4, 5]: in the case of fairly strong horizontal vibrations of a vessel containing a fluid with a free surface, the fluid collects near one of the vertical vessel walls, the free surface being practically plane and stationary with respect to the vessel, while its angle of inclination to the horizon depends on the vibration rate. But if there is a system of immiscible fluids with comparable but different densities in the vessel, horizontal vibrations lead to the formation of a steady wave relief at the interface. An explanation of the behavior of a fluid with a free boundary was given in [6] on the basis of averaged equations of fluid motion in a vibrational field. The present paper is devoted to an analysis of the behavior of the interface of fluids with comparable densities in a high-frequency vibrational field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.