Abstract

Abstract Emergency medical service (EMS) is an essential part of health care with the main task to transport and monitor patients. However, this duty often becomes a challenge due to obstacles - especially stairs - on the way. Associated lifting and carrying of patients regularly imposes high loads in unergonomic working postures on paramedics, leading to the highest work induced injury rates among all industries also due to a deficient usability of existing transport aids. Therefore our goal is the development of a stair climbing mechanism for a novel mechatronic transport aid characterized by high mobility and a small footprint, whereby particular attention has to be paid to application specific requirements. This paper presents the general approach accompanied by results of a functional model from an initial concept study. Acceleration and jerk measurements showed promising results, while most predefined velocities on the model test parkour rise could be reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.