Abstract

Established epithelial cell lines that retain their differentiation potential and growth regulatory characteristics can provide valuable tools for studying gene regulation, extracellular matrix synthesis or growth factor response. They are also useful for drug development and toxicity testing. Experiments were therefore carried out to optimize culture conditions for the long-term, serial transfer of corneal epithelial cells in the presence of 3T3 feeder layers; and to establish a permanent cell line. In such experiments, rabbit corneal epithelial cells were seeded at low inoculation densities, and transferred every 5 days. After 80 population doublings, an epithelial cell line, RCE1, emerged. The cell line is heteroploid, with an average population doubling time of 15.5 hours (vs 18 hours for primary cultures). When RCE1 cells reached confluence, they stratified to form a three- to five-layered epithelium and expressed the differentiation-related keratin pair K3/K12 as shown by immunoblot and immunostaining. Biosynthetic labeling of proliferating, confluent and stratified cultures further showed that RCE1 cells expressed keratin pairs K5/K14, K6/K16 and K3/K12, thus mimicking faithfully the stage-dependent differentiation of primary cultures of rabbit corneal keratinocytes. The results demonstrated that RCE1 cells provide a useful model for studying corneal cell growth and differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.