Abstract

This paper reports the development of a new composite material as a matching medium for medical microwave diagnostic systems, where maximizing the microwave energy that penetrates the interrogated tissue is critical for improving the quality of the diagnostic images. The proposed material has several advantages over what is commonly used in microwave diagnostic systems: it is semi-flexible and rigid, and it can maximize microwave energy coupling by matching the tissue’s dielectric constant without introducing high loss. The developed matching medium is a mirocomposite of barium titanate filler in polydimethylsiloxane (PDMS) in different weight-based mixing ratios. Dielectric properties of the material are measured using a Keysight open-ended coaxial slim probe from 0.5 to 10 GHz. To avoid systematic errors, a full dielectric properties calibration is performed before measurements of sample materials. Furthermore, the repeatability of the measurements and the homogeneity of the sample of interest are considered. Finally, to evaluate the proposed matching medium, its impact on a printed monopole antenna is studied. We demonstrate that the permittivity of the investigated mixtures can be increased in a controlled manner to reach values that have been previously shown to be optimal for medical microwave imaging (MWI) such as stroke and breast cancer diagnostic applications. As a result, the material is a good candidate for supporting antenna arrays designed for portable MWI scanners in applications such as stroke detection.

Highlights

  • The utilization of non-ionizing electromagnetic (EM) waves at microwave frequencies for medical imaging is a technology that has been widely investigated in the last years

  • This paper reports the development of a new composite material as a matching medium for medical microwave diagnostic systems, where maximizing the microwave energy that penetrates the interrogated tissue is critical for improving the quality of the diagnostic images

  • This paper focuses on the development and characterization of a new material as a matching medium for microwave imaging (MWI) systems

Read more

Summary

Introduction

The utilization of non-ionizing electromagnetic (EM) waves at microwave frequencies for medical imaging is a technology that has been widely investigated in the last years. Microwave imaging (MWI) systems are portable, cost-effective as well as safe due to the usage of non-ionizing radiation. MWI systems typically use a vector network analyzer (VNA) to generate and record the microwave signals and an array of antennas to transmit and receive the EM energy interacting with the interrogated region in the body. These signals can be translated to diagnostic information using various signal processing and imaging techniques. A critical aspect of many MWI systems is the use of an interface medium known as a matching medium that has a complex relative permittivity of εm with the real part ε and the imaginary part ε

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.