Abstract

We have developed a genotyping system for detecting genetic contamination in the laboratory mouse based on assaying single-nucleotide polymorphism (SNP) markers positioned on all autosomes and the X chromosome. This system provides a fast, reliable, and cost-effective way for genetic monitoring, while maintaining a very high degree of confidence. We describe the allelic distribution of 235 SNPs in 48 mouse strains, thereby creating a database of polymorphisms useful for genotyping purposes. The SNP markers used in this study were chosen from publicly available SNP databases. Four genotyping methods were evaluated, and dynamic two-tube allele-specific PCR assays were developed for each marker and tested on a set of 48 inbred mouse strains. The minimal number of assays sufficient to distinguish groups consisting of different numbers of mouse strains was estimated, and a panel of 28 SNPs sufficient to distinguish virtually all of the inbred strains tested was selected. Amplifluor SNP detection assays were developed for these markers and tested on an extended list of 96 strains. This panel was used as a genetic quality control approach to monitor the genotypes of nearly 300 inbred, wild-derived, congenic, consomic, and recombinant inbred strains maintained at The Jackson Laboratory. We have concluded that this marker panel is sufficient for genetic contamination monitoring in colonies containing a large number of genetically diverse mouse strains and that reduced versions of the panel could be implemented in facilities housing a lower number of strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.