Abstract
To actively reduce the stress concentration effect in adhesive layers, a novel smart adhesively bonded composite pipe joint system was developed by integrating piezoelectric layers as sensor/actuator in the connection coupler. In the presently developed smart pipe joint system, the mechanical loading induced structural deformation can be detected and monitored by integrated sensing piezoelectric layers, and then the signal is fed back to the integrated actuating piezoelectric layers to adaptively produce additional forces and moments so as to decrease the maximum peel and shear stresses in the adhesive layer. In order to theoretically predict the efficiency of the developed smart pipe joint system, an electro-mechanical theoretical analytical model was established to investigate the characteristics of the joint system under end tension load in terms of first-order shear deformation theory. Simultaneously, the state-space method was utilized to deduce the final analytical solutions, including the peel and shear stress distributions in the adhesive layer. Finally, some detailed numerical results were obtained to demonstrate the optimal design method of such smart pipe joint system and further validate the integrity of this joint system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.