Abstract
Copper (Cu) is a contaminant of potential concern for a uranium mine whose receiving waters are in the World Heritage-listed Kakadu National Park in northern Australia. The physicochemical characteristics of the freshwaters in this region enhance metal bioavailability and toxicity. Seven tropical species were used to assess the chronic toxicity of Cu in extremely soft freshwater from a creek upstream of the mine. Sensitivity to Cu was as follows: Moinodaphnia macleayi > Chlorella sp. > Velesunio sp. > Hydra viridissima > Amerianna cumingi > Lemna aequinoctialis > Mogurnda mogurnda. The 10% effect concentrations (EC10s) ranged from 1.0 µg/L Cu for the cladoceran Moinodaphnia macleayi to 9.6 µg/L for the fish M. mogurnda. The EC50s ranged from 6.6 µg/L Cu for the mussel Velesunio sp. to 22.5 µg/L Cu for M. mogurnda. Geochemical modeling predicted Cu to be strongly bound to fulvic acid (80%-99%) and of low bioavailability (0.02%-11.5%) under these conditions. Protective concentrations (PCs) were derived from a species sensitivity distribution for the local biota. The 99% PC (PC99), PC95, PC90, and PC80 values were 0.5, 0.8, 1.0, and 1.5 µg/L Cu, respectively. These threshold values suggest that the current Australian and New Zealand default national 99% protection guideline value for Cu (1.0 µg/L) would not provide adequate protection in freshwaters of low hardness, particularly for this area of high conservation value. The continuous criterion concentration predicted by the Cu biotic ligand model for conditions of low pH (6.1), low dissolved organic carbon (2.5 mg/L), low hardness (3.3 mg/L), and 27 °C was 0.48 µg/L Cu, comparable with the PC99. Consideration of the natural water quality conditions of a site is paramount for protective water quality guidelines. Environ Toxicol Chem 2022;41:2808-2821. © 2022 Commonwealth of Australia. Environmental Toxicology and Chemistry © 2022 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.