Abstract

Recently, a new assay method for the quantification of the singlet oxygen absorption capacity (SOAC) of antioxidants (AOs) and food extracts in homogeneous organic solvents was proposed. In this study, second-order rate constants (kQ) for the reaction of singlet oxygen (1O2) with eight different carotenoids (Cars) and α-tocopherol (α-Toc) were measured in an aqueous Triton X-100 (5.0 wt %) micellar solution (pH 7.4, 35 °C), which was used as a simple model of biomembranes. The kQ and relative SOAC values were measured using ultraviolet-visible (UV-vis) spectroscopy. The UV-vis absorption spectra of Cars and α-Toc were measured in both a micellar solution and chloroform, to investigate the effect of solvent on the kQ and SOAC values. Furthermore, decay rates (kd) of 1O2 were measured in 0.0, 1.0, 3.0, and 5.0 wt % micellar solutions (pH 7.4), using time-resolved near-infrared fluorescence spectroscopy, to determine the absolute kQ values of the AOs. The results obtained demonstrate that the kQ values of AOs in homogeneous and heterogeneous solutions vary notably depending on (i) the polarity [dielectric constant (ε)] of the reaction field between AOs and 1O2, (ii) the local concentration of AOs, and (iii) the mobility of AOs in solution. In addition, the kQ and relative SOAC values obtained for the Cars in a heterogeneous micellar solution differ remarkably from those in homogeneous organic solvents. Measurements of kQ and SOAC values in a micellar solution may be useful for evaluating the 1O2 quenching activity of AOs in biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.