Abstract
Methyl mercury (meHg) contamination of fish is the leading cause of fish consumption advisories in the United States. These advisories have focused upon repeated or chronic exposure, whereas risks during pregnancy may also exist from a single-meal exposure if the fish tissue concentration is high enough. In this study, acute exposure to meHg from a single fish meal was analyzed by using the one-compartment meHg biokinetic model to predict maternal hair concentrations. These concentrations were evaluated against the mercury hair concentration corresponding to the U.S. Environmental Protection Agency's reference dose (RfD), which is intended to protect against neurodevelopmental effects. The one-compartment model was validated against blood concentrations from three datasets in which human subjects ingested meHg in fish, either as a single meal or multiple meals. Model simulations of the single-meal scenario at different fish meHg concentrations found that concentrations of 2.0 ppm or higher can be associated with maternal hair concentrations elevated above the RfD level for days to weeks during gestation. A single-meal fish concentration cutoff of > or = 2.0 ppm is an important consideration, especially because this single high exposure event might be in addition to a baseline meHg body burden from other types of fish consumption. This type of single-meal advisory requires that fish sampling programs provide data for individual rather than composited fish, and take into account seasonal differences that may exist in fish concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.