Abstract

A single ion hit facility is being developed at the Pierre Süe Laboratory (LPS) since 2004. This set-up will be dedicated to the study of ionising radiation effects on living cells, which will complete current research conducted on uranium chemical toxicity on renal and osteoblastic cells. The study of the response to an exposure to alpha particles will allow us to distinguish radiological and chemical toxicities of uranium, with a special emphasis on the bystander effect at low doses. Designed and installed on the LPS Nuclear microprobe, up to now dedicated to ion beam microanalysis, this set-up will enable us to deliver an exact number of light ions accelerated by a 3.75 MV electrostatic accelerator. An 'in air' vertical beam permits the irradiation of cells in conditions compatible with cell culture techniques. Furthermore, cellular monolayer will be kept in controlled conditions of temperature and atmosphere in order to diminish stress. The beam is collimated with a fused silica capillary tubing to target pre-selected cells. Motorisation of the collimator with piezo-electric actuators should enable fast irradiation without moving the sample, thus avoiding mechanical stress. An automated epifluorescence microscope, mounted on an antivibration table, allows pre- and post-irradiation cell observation. An ultra thin silicon surface barrier detector has been developed and tested to be able to shoot a cell with a single alpha particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call