Abstract

Cyclic adenosine monophosphate (cAMP) plays a regulatory role as second messenger in many species. In the industrial model organism Corynebacterium glutamicum, cAMP acts as effector of the global transcriptional regulator GlxR, a homolog of enterobacterial Crp. The cAMP-GlxR complex activates or represses the expression of about 200 target genes. CyaB, a membrane-bound class III adenylate cyclase, synthesizes cAMP from ATP, but another yet unknown cAMP-forming enzyme is likely present in C. glutamicum. Recently, we identified the cAMP phosphodiesterase CpdA, which catalyzes the conversion of cAMP to AMP. As a tool to search for additional cAMP-forming and degrading enzymes, we constructed a plasmid-based cAMP biosensor by fusing the promoter of cg3195, a gene strongly repressed by GlxR, to the eyfp reporter gene. In control experiments, the biosensor showed the predicted responses to increased levels of cAMP or GlxR. The biosensor was able to distinguish between C. glutamicum wild type and mutants with defects in cAMP biosynthesis or degradation. Most importantly, the sensor allowed successful sorting of mixtures of wild type and mutant strains by fluorescence activated cell sorting (FACS), thus meeting the requirements for high-throughput screening of libraries for single mutant cells with an altered cAMP level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.