Abstract

Fatty acids (FA) have been important in clinical diagnosis for long, which makes the increasing need for a fast, reliable, and economic approach to determine FA of short-, medium-, long-, and very long-chain by widely available equipment and with high-throughput capacity. In the present work, 2‑nitrophenylhydrazine derivatization coupling with LC-MS/MS detection was utilized to simultaneously quantitate 18 FAs ranging from C4 to C26 in human plasma. The sample preparation protocol was optimized and extracting with diethyl ether‑potassium phosphate buffer twice was found as the highest efficiency along with economic feasibility. Under the optimized conditions, all the FA showed excellent linearity (R2 > 0.999 for each), sufficient sensitivity (LOD 0.2–330 fmol and LOQ 2.3–660 fmol for all), favorable accuracy (recovery ranged from 98.1 ± 3.6% to 104.9 ± 5.5% with coefficient of variation no >8.6% for all), and negligible matrix effect. In the clinical application on 30 healthy subjects, compared with the previous HPLC-UV method, the developed method showed high reliability, as well as reduced time and reagent costs. The established method showed the potential to apply to not only diagnostic practice, but also nutritional and epidemiological studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call