Abstract

ABSTRACT Automotive and tire companies have to spend extensive amounts of time and money to tune their products through prototype testing at dedicated test facilities. This is mainly because of the limitations in the simulation capabilities that exist today. With greater competence in simulation comes more control over designs in the initial stages, which in turn lowers the demand for the expensive stage of tuning. This article aims at taking today's simulation capabilities a step forward by integrating models that are best developed in different software interfaces. An in-plane rigid ring tire model has been developed to understand the transient response of tires to various high-frequency events such as antilock braking and short-wavelength road disturbances. A rule-based antilock braking systems (ABS) model performed the high-frequency braking operation. The tire and ABS models were created in the Matlab-Simulink environment. A vehicle model was developed in CarSim. The models developed in Simulink were integrated with the vehicle model in CarSim, in the form of a design tool that can be used by tire as well as car designers for further tuning of the vehicle functional performances, as they relate to handling and braking maneuvers. The straight-line ABS performance was predicted using these models for a sample vehicle, and the results were substantiated through physical outdoor tests on the same vehicle to validate the developed integration package. The tool development, simulation results, and the objective test will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.