Abstract

The neutron electric dipole moment (nEDM) is sensitive to new physics beyond the standard model and could prove to be a new source of CP violation. Several experiments are being planned worldwide for its high-precision measurement. The nEDM is measured as the ultracold neutron (UCN) spin precession in a storage bottle under homogeneous electric and magnetic fields. In nEDM measurement, the systematic uncertainties are due to the motion of the UCNs, the geometry of the measurement system, and inhomogeneous electric and magnetic fields. Therefore, it is essential to quantitatively understand these effects in order to reduce them. Geant4UCN is an ideal simulation framework because it can compute the UCN trajectory, evaluate the time evolution of the spin precession due to arbitrary electric and magnetic fields, and define the storage geometry flexibly. We checked how accurately Geant4UCN can calculate the spin precession. We found that because of rounding errors, it cannot simulate it accurately enough for nEDM experiments, assuming homogeneous electric and magnetic fields with strengths of 10 kV/cm and 1 μT, respectively, and 100 s of storage. In this paper, we report on its discrepancies and describe a solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call