Abstract

This paper describes a simulation-based decision support system (DSS) to production control of a stochastic flexible job shop (SFJS) manufacturing system. The controller design approach is built around the theory of supervisory control based on discrete-event simulation with an event–condition–action (ECA) real-time rule-based system. The proposed controller constitutes the framework of an adaptive controller supporting the co-ordination and co-operation relations by integrating a real-time simulator and a rule-based DSS. For implementing SFJS controller, the proposed DSS receives online results from simulator and identifies opportunities for incremental improvement of performance criteria within real-time simulation data exchange (SDX). A bilateral method for multi-performance criteria optimization combines a gradient based method and the DSS to control dynamic state variables of SFJS concurrently. The model is validated by some benchmark test problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call