Abstract
In this study, we present a systematic search for a simple geometrical pore model relating the N2 adsorption data on zeolite templated carbon (ZTC) to its pore size distribution (PSD). Based on the known genesis of the templated carbon and the literature studies suggesting its curved pore structure, we explore possible applicability of simple geometrical pore models for the PSD analysis of the ZTC N2 adsorption isotherm. The isotherm analysis is performed using the models based on the two-dimensional version of the non-local density functional theory (2D-NLDFT). We consider finite and continuous curved cylindrical pores. In agreement with XRD results showing no stacked graphene sheets in the calculations, we assume pore walls to be constructed by single-layer graphenes. In the PSD analysis of the ZTC nitrogen adsorption isotherm using NLDFT models assuming different shapes and length of finite pores as well as continuous curved pores of various curvatures. Based on these analyses, we selected an optimal NLDFT adsorption model that is consistent with the ZTC structure described by the atomistic structural model. The periodicity of this optimal model practically coincides with the periodicity of the ZTC lattice that was uncovered by the TEM image reported in the earlier study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.