Abstract
In this paper, a simple model was developed to predict the dynamics of a spark-induced bubble under different ambient pressures. This work helps in developing a deep-towed plasma sparker, as the model can predict the dynamics of bubbles subjected to very high ambient pressures (about 20 MPa) which normally are difficult to obtain experimentally. Experimental results indicate that the maximum bubble radius for a fixed discharge energy decreases as a power-law function of the ambient pressure up to 1.0 MPa; the bubble period also decreases quickly with increasing ambient pressure. For a constant value of the ratio of bubble energy to discharge energy, the modeling results for both maximum radius and bubble period are in good agreement with the experimental results. Both sets of results indicate that the bubble period is proportional to the maximum radius under different ambient pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.