Abstract
In this paper, we develop a coarse-grained nucleotide model for the purpose of simulating large-scale aptamer-based hydrogel network formation in future research. In the model, each nucleotide is represented by a single interaction site containing sugar, phosphate and base. Discontinuous molecular dynamics (DMD) simulations are performed to simulate formation and denaturation of oligonucleotide duplexes as a function of temperature. The simulated melting temperatures of oligonucleotide duplexes are calculated in simulations of systems with different sequences, lengths and concentrations of oligonucleotides, and compared to data from the OligoAnalyzer tool. The denaturation of oligonucleotide triplexes containing a hybridised structure of three different oligonucleotides is analysed using both simulations and experiments. The nucleotide model is found to be a good predictor of the oligonucleotide’s hybridised state for both duplexes and triplexes. This coarse-grained model has wide ranging applications in the development or optimisation of DNA-based technologies including DNA origami, DNA-enabled hydrogels and DNA-based biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.