Abstract

A silver ion source was designed by focusing the fundamental and harmonics of Q-switched Nd:YAG laser pulses onto a silver target and simultaneously applying an electric potential in an argon environment. The silver ions were detected at a distance of 2 cm from the target surface using a Faraday cup ion probe after letting them pass through a retarding mesh grid (copper electrode). We aim to produce and characterize the silver ions generated by the laser radiation of different wavelengths and pulse energy, ambient gas pressure and the electrode spacing under applied electric field. In addition to this, the effect of laser radiation on plasma under vacuum and at different argon gas pressures was investigated. The velocity distribution function of the plasma emitted from the silver target was investigated under argon discharge. These measurements demonstrated clearly that the velocity distribution function and current signals depend on laser power, laser wavelength and argon pressure. We observed a ten fold increase in the plume current with increase in the applied voltage and ion velocity in the presence of a laser field. The surface morphology of the laser irradiated samples was investigated using reflection optical microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call